
Preprint: Chandrasekaran, J., Lei, Y., Kacker, R., & Kuhn, D. R. (2021, April). A Combinatorial Approach to Explaining Image Classifiers.
IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (pp. 35-43). IEEE.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Combinatorial Approach to Explaining Image
Classifiers

Jaganmohan Chandrasekaran
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
jaganmohan.chandrasekaran@mavs.uta.edu

Yu Lei
Department of Computer Science &

Engineering
The University of Texas at Arlington

Arlington, USA
ylei@cse.uta.edu

Raghu Kacker, D. Richard Kuhn
Information Technology Lab

National Institute of Standards and
Technology

Gaithersburg, USA
{raghu.kacker, d.kuhn}@nist.gov

Abstract—Machine Learning (ML) models, a core
component to artificial intelligence systems, often come as a
black box to the user, leading to the problem of interpretability.
Explainable Artificial Intelligence (XAI) is key to providing
confidence and trustworthiness for machine learning-based
software systems. We observe a fundamental connection
between XAI and software fault localization. In this paper, we
present an approach that uses BEN, a combinatorial testing-
based software fault localization approach, to produce
explanations for decisions made by ML models.

Keywords— explainability, deep learning, software testing,
debugging DNN models, explainable AI, combinatorial testing,
Image classifiers, model-agnostic, counterfactual explanation,
instance-level explanations

I. INTRODUCTION
Artificial Intelligence (AI) based software systems are

increasingly adopted in safety-critical domains, e.g. medical
imaging and autonomous driving. At the core of AI-based
software systems is a machine learning (ML) model that is
used to perform tasks such as classification and prediction.
The ML models used in such tasks are black box in nature,
i.e., the reasoning behind their decision is typically not known
to the user. Using a black box model in AI software systems
could compromise trustworthiness and create problems such
as racial and gender bias. There is an urgent need to provide
explanations for the decisions made by AI-based software
systems.

Explainable Artificial Intelligence (XAI) focuses on
creating approaches and tools that can automatically provide
explanations for the decisions made by ML models [21]. In
particular, XAI tries to answer the following two questions:
Why does the model make a particular decision? What are the
major factors that contribute to the decision? XAI has attracted
a lot of interest from both academia and industry in the past
few years. Providing explanations allows a model to be
interpreted, which is key to acceptance of AI technologies.
Furthermore, information gathered from an interpretable
model can help engineers determine the cause of incorrect
decisions.

There are two types of explanations for AI decisions.
Local explanations are created to explain a specific decision,
whereas global explanations are created to explain an entire
model. In this paper we present an approach that creates local
explanations using the counterfactual approach, which human
factor studies have shown to be highly effective for
explanation [29]. A counterfactual approach tries to identify a

minimum set of features that, if removed, would cause a
different decision to be made [24].

The key insight is that from an abstract perspective,
producing a counterfactual explanation for a local decision
made by an ML model is similar to the fault localization
problem [30][31]. In fault localization, given a failing
scenario, a software developer identifies which part of the
input that causes the failure. Similarly, in XAI, given a
decision made by an ML model, we identify features that
causes the decision, in the sense that if these features are
removed, then the decision would be different.

Specifically, we explore the use of a combinatorial testing-
based fault localization approach called BEN to produce
counterfactual explanations for image classifiers. Given a t-
way test set, BEN identifies a failure-inducing (or inducing)
combination that causes every test (for a deterministic system)
containing the combination to fail and that is as small as
possible [8]. We apply BEN to quickly identify a minimal
subset of features in an image that, if removed, would result
in a different classification.

Assume that a model M produces a classification X for an
input image I. To produce a counterfactual explanation for this
classification result, we first perform segmentation on image
I. In image segmentation, various algorithms are used to
assign a class to each pixel of an image. For example, in a
street scene, boundary detection and other algorithms may
identify classes “sign”, “human”, “car”, etc., and each pixel of
the image is associated with one of the classes. The
segmentation process may be applied at a more granular level
to identify parts of objects. Each segment is modeled as a
Boolean parameter. We build a 2-way test set for these
parameters. Each test can be used to derive a test image from
the original image, i.e. image I. A segment is masked in the
test image if the corresponding parameter is true in the test;
otherwise, a segment is retained without modification.

The notion of test execution is mapped to image
classification in the following sense. If a test image is
classified by model M differently than the original image, the
corresponding test execution is considered to be failing.
Otherwise, the corresponding test execution is considered to
be passing. The 2-way test set with execution statuses is then
fed to BEN to identify inducing combinations. In the
identification process, BEN could generate additional tests,
which can be executed in the same manner. That is, for each
additional test, a test image is first derived and then classified
using model M to determine its execution status.

Finally, each inducing combination identified by BEN is
used to derive an image that produces a different
classification. This image serves as a counterfactual
explanation for the original classification X.

We report an experimental evaluation of our approach. We
use the VGG16 model [1], a popular image classifier as our
subject model and fifty randomly selected seed images from
the ImageNet test dataset [4]. Our results suggest for 44 (out
of 50) images, our approach can generate counterfactual
explanations. Furthermore, in most cases, our approach can
generate a counterfactual explanation by removing no more
than two segments from the input image.

 The remainder this paper is organized as follows. Section
II provides an introduction to Deep Neural Network-based
image classifiers, counterfactual explanations, and BENs. In
Section III, we present our approach and give an example to
illustrate the approach. Section IV reports the experimental
evaluation of our approach, where we present our
experimental design, results and discussion. Section V
discusses the existing work on XAI. Section VI provides
concluding remarks and directions for our future work.

II. BACKGROUND

A. Deep Neural Networks
Deep learning is used across domains such as autonomous

driving, speech recognition, speech translation, and medical
imaging. At the core of deep learning is a Deep Neural
Network (DNN) that is used to perform tasks such as image
classification, object detection, and others. A DNN follows a
neural network architecture and consists of an input layer,
several hidden layers and an output layer. A trained DNN
model takes an input (e.g., an image) and produces a
prediction as output.

Compared to traditional software development, where the
programming logic is implemented based on rules derived
from the requirements, DNN based applications derive their
decision logic (learning) from a training dataset. The decision
logic is referred to as the trained DNN model.

In recent years, deep learning-based image recognition
software systems have improved significantly and could be
more efficient than humans in some domains. A practitioner
can build a DNN model using different types of neural
network architecture. One of the popular neural network
architectures used for image recognition tasks is convolutional
neural networks (CNN). Given an input, CNN architecture is
known for its ability to detect important features without any
human supervision. The subject models used in our
experiments use a CNN based architecture and perform image
classification.

B. AI Explanations
The explanations generated by XAI tools can be

categorized into two types, feature-importance based
explanations and counterfactual explanations. Assume a
model M that produces a classification X for an input image I.
A feature-importance based explanation identifies a set of
important features of I that contribute to decision X. In
addition, it assigns weights to the features that quantify their
contribution. In contrast, a counterfactual explanation
identifies a minimum set of features of I that if removed, shall
change the prediction. In other words, counterfactual
explanations are contrastive in nature.

C. BEN
Ghandehari et al. developed a combinatorial testing-based

approach called BEN to software fault localization [7, 8].
Localizing a fault using BEN consists of two major phases:
inducing combination identification (Phase I) and faulty
statement localization (Phase II). BEN assumes that a
combinatorial t-way test set is available and has been executed
on the SUT. In the first phase, BEN takes the t-way test set
and its results as input and tries to identify one or more
inducing combinations in an iterative manner. BEN analyses
the test file and identifies a set of t-way suspicious
combinations. Based on the t-way suspicious combination(s),
BEN generates a new t-way test set. For the new t-way test
set, the user generates concrete tests, executes the tests, and
records their execution status (either pass or fail). Then, the
user provides the execution status back to BEN. This process
is repeated until BEN identifies an inducing combination.
Note that BEN expects the initial test set to contain at least one
passing and one failing test. If there is no passing test in the
initial t-way test set, BEN identifies an inducing combination
based on the initial t-way test set. In our approach, the
inducing combination identified by BEN is used to generate
counterfactual explanations. Phase II of BEN is not utilized in
our approach.

III. APPROACH
This section presents a combinatorial approach to generate

counterfactual explanations for machine learning models that
take an image as input and output a prediction. Our approach
consists of four phases: Image segmentation, t-way testing,
identifying inducing segments, and constructing explanations.

Image Segmentation: Image segmentation is a widely
used image processing technique that partitions a digital
image into different segments based on the characteristics of
the image pixels. In our approach we first perform image
segmentation on the input image. As discussed later, each
segment is modeled as a parameter during CT. Working with
segments instead of pixels allows us to reduce the number of
parameters in our input parameter model (IPM).

We point out that the number of segments could
potentially affect the quality of the counterfactual explanation.
The more segments, the finer grained the resulting explanation
could be. However, the more segments, the more parameters,
the more expensive to produce the explanation. Many
segmentation algorithms allow the user to define a maximum
number of segments. The exact number of segments produced
by the segmentation process is typically close to the maximum
number. A trade-off decision often needs to be made when
choosing the maximum number of segments.

Recall that BEN assumes that there exists an input
parameter model (IPM) of the SUT, a test oracle to determine
the status of the test execution, and a t-way combinatorial test
set with execution results. In the following we discuss how to
provide these components in the context of XAI.

T-Way Testing: We begin this phase by deriving an input
parameter model for the SUT, i.e., for the input image. For an
input image, every segment is considered as a parameter.

Our approach aims to identify a minimum number of
segments that, if removed, would change the prediction. To
remove a segment, we perform a masking operation on the
particular segment. In our approach, a segment can either be
masked or not masked. Therefore, in the IPM, for each

parameter, we identify the following two values – true
(masked) and false (not masked).

Then, we generate an abstract t-way test set using ACTS,
a combinatorial test generation tool [14]. We derive the
concrete tests by applying masking to specific image segments
(as per the test case) using image-processing python libraries
[13, 25, 33, 34]. We execute the concrete tests (images) and
determine their execution statuses.

Given an image, the DNN model produces a class label
(prediction) as output. To determine the execution status of a
test, we define the test oracle as follows: On executing the
model with a test image, if the output (class label) matches
that of the original image, we consider it to be a passing test.
If the output does not match the output of the original image,
we consider it to be a failing test.

Identifying Inducing Combinations: We begin this
phase by providing an initial test file (as input) to BEN. The
initial test file includes parameters and values, the test
strength, the initial t-way test set, and the execution status of
each test. In each iteration, analyzing the test file, BEN either
generates an additional set of tests or terminates by identifying
inducing combination(s). For additional tests generated by
BEN, we derive concrete tests (t-way images), execute the
model with the test images and update their execution statuses.
Then, we provide the updated test results to BEN.

This process continues until one of the stopping conditions
is satisfied: (1) an inducing combination is identified by BEN,
or (2) the user decides to stop the process. In the latter case,
the top-ranked suspicious combination is considered to be the
inducing combination, and we proceed to the next phase.

Constructing Explanations: In this phase, we derive
explanations based on the inducing combinations in an
iterative manner.

Given the nature of the XAI problem, an inducing
combination identified by BEN may not be directly used to
produce a counterfactual explanation. Consider a scenario
where an input image has 20 segments (i.e., 20 parameters,
and each parameter has two values - TRUE, FALSE). BEN
identifies the following two inducing combinations:
(segment_1 = FALSE, segment_4 = FALSE), (segment_2 =
TRUE, segment_4 = FALSE).

The first inducing combination suggests a test retaining
segment_1 and segment_4 shall fail (change the prediction).
Even though all the test images that contain these two
segments have a different classification, this inducing
combination cannot be used to produce a counterfactual
explanation, since it does not suggest any segments to be
removed.

The second inducing combination suggests to remove
segment 2 (masked) while retaining segment_4 in order to
produce a different classification. This combination can be
used to produce a counterfactual explanation as discussed
next.

In general, an inducing combination that suggests the
removal of one or more segments can be used to produce
counterfactual explanations.

We begin to construct a counterfactual explanation by
selecting the top-ranked inducing combination, generating an
image based on the inducing combination (modified image),
executing the model with the image, and recording its

execution status. Suppose the prediction of the modified
image differs from the prediction of the original image (fail).
In that case, the approach stops, and the modified image is
shown as an explanation to the user.

Otherwise, if the prediction of the modified image is the
same as the prediction of the original image state (pass), we
select the next ranked inducing combination and repeat the
process, i.e., generate an image based on the inducing
combination, and execute and compare its prediction with the
original prediction.

This process is continued until either of the two conditions
is satisfied: (1) the prediction of a modified image generated
based on inducing combination(s) differs from the prediction
of the original image; or (2) all the modified images generated
based on the inducing combination(s) match the original
prediction. In the first case, the modified image is shown as an
explanation to the user. In the second case, we derive an
explanation as follows.

First, we analyze the test suite and identify a test that (1)
contains the inducing combination, and (2) the prediction
differs from the original prediction (i.e., a failing test). If there
is more than one test that satisfies the two criteria, we select a
test with the least number of masked segments. Recall that our
objective is to identify a minimal number of segments that, if
removed, shall change the prediction.

Next, in addition to the inducing combination, we mask
the additional segments whose values are true in the test in an
incremental manner (one segment at a time), starting with the
segments closer to the segments in the inducing combination.
This process is repeated until the prediction of the modified
image differs from the original prediction. The modified
image is shown as an explanation to the user. Note that
masking additional segments from a failing test is likely to
produce a counterfactual explanation, since its prediction
differs from the original prediction.

Example: We illustrate our approach using an example.
Consider the image in Figure 1. It is assumed that the DNN
model is executed with the image and the prediction result (P)
is available.

To derive a counterfactual explanation, we begin with
image segmentation, which identified the possible number of
segments for the subject image as 20 (Figure 2).

Next, we build an IPM with 20 parameters; each parameter
has two values: {TRUE and FALSE}. Then, we generate a 2-
way test set (12 tests) using ACTS [14]. We derive the
concrete tests (test images), execute the model with concrete
tests, record and compare their execution statuses (P`) with the
original prediction (P). Based on the execution statuses, we
have four passing tests (P = P`) and eight failing tests (P !=
P`). A test file is generated, and it contains the IPM, the
strength of the t-way test set, the t-way test set, and its
execution status.

Next we provide the test file as input to BEN. After a
couple of iterations, BEN identifies an inducing combination
- segment_10=TRUE,segment_12=TRUE,segment_17=false.
Note that at each iteration, we repeat the process of deriving,
executing, and updating the status of the additional tests.

To derive a counterfactual explanation, we generate a
modified image based on the inducing combination -

segment_10=TRUE,segment_12=TRUE,segment_17=FALS
E.

Although the inducing combination consists of three
segments, the modified image will have two (out of three)
segments, namely S_10, S_12 masked, while no changes
being made to S_17, as its value is FALSE, i.e., not to mask
the segment. Then, we execute the model with the modified
image, and its output (prediction) is compared to the output of
the original image. The prediction of the modified image
differs from the original prediction.

At this point, the approach terminates, and the modified
image (Figure 3) is shown as a counterfactual explanation to
the user.

IV. EXPERIMENTS
In this section, first, we present the design of our

experiments including the research question, the subject
model and selection of seed images, segmentation and
masking techniques, and the metrics used to measure the
effectiveness of our approach. Second, we present and discuss
our results. Third, we compare the results of our approach with
SHAP, a popular state-of-the art XAI tool. Finally, the threats
to validity are discussed. The source code, data and/or artifacts
have been made available at [27, 28]

A. Research Questions
 The major research question of our evaluation is the

following:

• How effective is BEN in generating
counterfactual explanations for DNN-based
image classifiers?

B. Model
We evaluate our approach using an open-source, pre-

trained model – VGG16 [1]. The model uses a convolutional

neural network architecture consisting of 13 convolution
layers and three dense layers. VGG16 is used in evaluating
similar explainable AI tools [2].

C. Seed Images
The ImageNet dataset is an extensive collection of visual

images. The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is an annual competition for evaluating
algorithms for object detection and image classification [4].
The VGG16 model, a runner-up at the ILSVRC 2014
challenge, is trained using the ImageNet dataset with over 14
million images with 1000 classes.

In our experiments, we use the ILSVRC2017 test dataset,
the latest test dataset from ImageNet (ILSVRC2017). The test
dataset consists of 5500 images [4, 5]. We randomly selected
fifty seed images.

D. Segmentation
The Simple Linear Iterative Clustering (SLIC) algorithm

is used to perform image segmentation [13]. Based on the
maximum number of desired segments provided by the user,
the SLIC algorithm clusters pixels based on their color
similarity and proximity in the image plane and create
segments. In our experiments, we set the maximum number of
segments to 25. However, the exact number of possible
segments varies for each seed image. This is because the SLIC
algorithm generates segments based on certain properties of
an image.

E. Masking of Segments
An image consists of an array of dots referred to as pixels.

Pixels of a color image can have a value in the range of 0 to
255. The value of 0 represents a black pixel, and the value of
255 denotes a white pixel. In our experiments, we mask a
segment by setting all its pixels to the value of 0.

F. Metrics
The effectiveness of our approach is measured in terms of

the quality of the counterfactual explanations it produces. The
quality of a counterfactual explanation could be measured in
different ways [21][32]. Ultimately, a counterfactual
explanation should make sense to a human subject. This is
however subjective.

In our experiments, the quality of a counterfactual
explanation is measured in the following two aspects: (1) the
number of segments that need to be removed from the original
image to produce the explanation. The fewer segments to be
removed, the easier to be understood, the higher quality. (2)
the explanation must produce a different prediction than the
original prediction.

G. Results and Discussion
Our approach effectively derived counterfactual

explanations for 44 (out of 50) seed images. In the following,
we present the details of our results. Due to space limitations,
we only show some example results in this section. The
complete results are available at [27, 28].

1) Counterfactual Explanations
First, we present the results of counterfactual explanations

generated from an inducing combination alone i.e., no
additional segments need to be removed. For 24 out of 50

images, the modified images generated based on their
respective inducing combination (identified by BEN)
effectively change the original prediction.

Our results show that for 6 out of 24 images, our approach
removes one segment to produce the counterfactual
explanation. For 16 out of 24 images, our approach only
removes 2 segments. For the remaining 2 out of 24 images,
our approach removes three segments.

Figure 4 shows some example results of these images. In
each row, the first image is the original seed image; the second
image shows the segmentation applied to the seed image. The
third image is the counterfactual explanation. For the image in
Row 1, removing one segment (segment 4) modifies the

prediction from white_stork to black_stork. For the images in
Row 2 (original prediction: dragonfly) and Row 3 (original
prediction: stage), removing two segments changes the
prediction to lycaenid and feather_boa, respectively. For the
image in Row 4 removing 3 segments changes the prediction
from sea lion to promontory.

Next, we discuss the counterfactual explanations that
cannot be derived from the inducing combination alone.
Instead, some additional segments need to be removed to
produce a counterfactual explanation. For 20 images in our
experiments, the modified images generated from their
respective inducing combinations alone do not change the
predicted class labels. Therefore, additional segments must be

removed for these images in order to produce a counterfactual
explanation.

Our results indicate that for 8 out of 20 images, masking
one additional segment along with the inducing combination
was sufficient to change the classification. For 7 out of the
remaining 15 images, two additional segments needed to be
masked. For the remaining 5 images, in addition to the
inducing combinations, we masked three to five additional
segments to generate a counterfactual explanation.

 Figure 5 presents some of the counterfactual explanations
generated from the inducting combination and one or more
additional segments. In each row, the first image is the original
seed image, followed by the segmentation applied to the seed
image and the modified image produced based on their
respective inducing combination. The fourth image is the
counterfactual explanation produced from the inducing
combination and one or more additional segments.

For the image in Row 1 - image #2737 with an original
prediction - mountain_bike, masking one segment
(segment_4=true), in addition to the inducing combination
(segment_5=true, segment_13=true), changes the original
prediction from mountain_bike to moped. Similarly, for image
#4148 (Row 2) with an original prediction of Arabian_camel,
masking one additional segment changes the original
prediction from Arabian_camel to a sarong.

 Consider the image in Row 3 (image #3793, original
prediction – tiger), in addition to the inducing combination
(segment_7=true, segment_19=true), masking four more

segments (segment 2, 4, 17, 20) is necessary to change the
original prediction from tiger to an Egyptian_cat.

The results suggest that in most cases, our approach can
efficiently generate a high quality counterfactual for image
classifiers. In other words, our approach can effectively
identify a minimal (2 or 3 segments) yet important set of
segments that if removed, would modify the original
prediction.

 We note that BEN was unable to identify inducing
combinations for five seed images. For one of the seed images
(image # 4541), BEN terminated with an error message. There
is no suspicious combination whose length is 2. For the
remaining five seed images, in spite of multiple iterations,
BEN failed to identify an inducing combination. We observe
that all the additional tests generated by BEN resulted in a
passing status for each of these images. Therefore, we suspect
BEN is unable to find an inducing combination as it expects
at least one failing test to identify an inducing combination.
We plan to investigate this as part of future work.

2) Comparison with SHAP
We compare the counter-factual explanations (derived by

our approach) with SHAP, a widely used feature-importance
approach tool [19]. Given an input and a pre-trained model,
SHAP produces explanations for a model's decision by
ranking the input features that contributed to the model's
decision (feature-importance-based explanation). This
comparison allows us to see the importance of the segments
removed by our approach to produce a counterfactual
explanation.

 Figure 6 presents some of the comparison results. The
first image in each row presents the counterfactual explanation
identified by our approach. The second image represents the
output produced by the SHAP tool. SHAP output consists of
four images: the original image (provided as input to the
SHAP algorithm), followed by the top three predictions from
the model with the features (segments) contributing to that
corresponding predictions. Features (segments) that positively
contribute to the outcome are highlighted in green, and
features (segments) that negatively contribute to the outcome
are highlighted in red.

Among the five images, the output from SHAP suggests,
the set of segments that are removed to generate a
counterfactual explanation in our approach positively
contributes to the original decision (highlighted in green
color). In other words, our approach identifies a minimal yet

significant set of segments that if removed, shall modify the
prediction. One of the interesting examples is the image from
row 3 in Figure 6. The image consists of two performers, a
microphone and a guitar. The predicted class label for the
original seed image is a stage. Our approach suggests a part of
a performer's body (segment #7) be removed to generate a
counterfactual explanation, which is an unexpected segment
(intuitively). However, the results from SHAP confirm that
segment #7 contributes significantly to the predicted class
label.

A counterfactual explanation does not determine the
correctness of the original prediction. Consider the image
from the image from row 5 in Figure 6. The image consists of
a person on a motorcycle. The predicted class label for the
original seed image (mountain_bike) might not match the
user’s expectation (motorcycle). In such scenarios, i.e., in

case of a model’s misprediction, deriving a counterfactual
explanation can identify a set of features (segments) that if
removed would modify the prediction. In other words, a
counterfactual explanation could help identify a set of features
that contribute to the misprediction. Likewise, SHAP also
indicates the set of segments that contribute to the original
prediction - mountain_bike. As part of future work, we plan to
investigate the possibility of using the feedback from the
counterfactual explanations to debug a model’s misprediction.

This is an initial comparison study. The overall results
indicate that BEN can be effectively adopted to derive a
counterfactual explanation that indicates significant segments,
i.e., segments that make a significant contribution to a model’s
decision. SHAP performs 1000 iterations to generate
explanations. That is, SHAP executes the VGG16 model 1000
times to identify the important features that contribute to a
model’s decision. In contrast, our approach derives
explanations with an average of 20 - 25 test cases (image
perturbations). In other words, we derive a counterfactual
explanation by executing the VGG16 model for an average of
25 times. We plan to perform a detailed, comprehensive
comparison with other state-of-the-art explainable AI tools as
part of future work.

H. Threats to Validity
 Threats to internal validity are factors that may be
responsible for the experimental results, without our
knowledge. To mitigate the risk of human errors, we tried to
automate as many tasks as possible, from generating synthetic
images to executing the tests. Also, we have manually checked
some of the results whenever any inconsistent or surprising
results occur. For example, for image 3456 and 3462 all the
initial tests resulted in a failure. In contrast, image 3703 and
3793 had a mix of passing and failing test. In such scenarios,
we manually verified test results by inspecting the images and
the prediction results.

 Threats to external validity occur when the results from
our experiments could not be generalized to other subjects.
The DNN model architecture used in our study have been used
in other studies [2, 3]. We randomly selected fifty seed images
from ImageNet, a large, diverse dataset with more than 5000
images. This helps to alleviate the risk of lack of diverse
images used in our study.

V. RELATED WORK
In this section, we discuss existing work that is closely

related to our work. First, we discuss existing work on
counterfactual explanations. Dhurandhar et al. proposed a
method that produces contrastive explanations. Their method
identifies two sets of pixels: (1) A minimal set of features that
are sufficient to obtain the current classification (pertinent
positive); and (2) A minimal set of features that should be
absent to obtain the current classification (pertinent negative)
[10]. In contrast, we identify a minimal number of features
(segments) that if removed (absent), will change the current
classification.

Goyal et al. proposed a technique that generates
counterfactual visual explanations [11]. Assume that for an
input image I, model M predicts class A. Their approach
generates a visual explanation that tries to answer the
following question: How should the image I be different for
the model to predict Class B instead of Class A? Our work is
similar to theirs in terms of altering the input image and

showing a modified image as a counterfactual explanation.
However, in our approach, the modification is limited to
removal of one or more segments from the original image,
whereas they generate counterfactual explanation by
identifying and replacing regions of the original image with
regions from the image belonging to the counterfactual class.

Vermeire et al. proposed a model-agnostic approach to
generate counterfactual explanations for image classifiers [3].
Our work is similar to theirs in terms of identifying segments
that, if removed, shall change the classification. Our work is
different from theirs in the following ways: They propose two
methods, i.e., Search for Evidence Counterfactuals (SEDC)
and Search for Evidence Couterfactuals with Target
Counterfactual Class (SEDC-T). SEDC uses a best-first
search approach to generate a counterfactual explanation. In
SEDC-T, a counterfactual explanation is generated by
removing segments (iteratively) to reach a predefined target
class. In contrast, we use a combinatorial testing-based
approach to generate counterfactual explanations, and our
approach does not target a predefined class.

Hendricks et al. propose a method that produces a
descriptive counterfactual text as an explanation to the end
user [12]. Compared to this, our approach displays a modified
image (with removed segments) to the end user.

Existing work reported in [16, 17] generates
counterfactual explanations for tabular data. In contrast, our
work generates counterfactual explanations for an image data.

Riberio et al. proposed LIME that generates local
explanations based on input perturbations that probe a ML
model and derive explanations [18,20]. Lundberg et al.
proposed SHAP that generates explanations using game
theoretic framework [19]. Similar to our work, LIME and
SHAP create image perturbations by segmentation to derive
an explanation. However, our work focuses on generating a
counterfactual explanation, whereas their work focuses on
identifying important features that contribute to the original
decision.

Sun et al. proposed a statistical fault localization-based
approach called DeepCover to generate explanations for
image classifiers [2]. In their approach every pixel from the
image is assigned a score in terms of their likelihood to
contribute to the original decision. An explanation is derived
by adding sufficient pixels (a subset of the original pixels) that
shall produce the original decision. Our work is similar to their
work in terms of using a software fault localization-based
approach to derive explanations. However, our work differs in
the following two ways: 1) we generate t-way test inputs
(image perturbations) whereas their approach randomly
selects and masks a set of pixels; and 2) we generate a
counterfactual explanation whereas their explanation focuses
on the pixels that contribute to the original decision.

Similar to our work, Kuhn et al. adopted a combinatorial
fault location process and reported an approach that identifies
a unique t-way combination that contributes to a model’s
decision [30][31]. Their approach is designed for tabular data.
In contrast, our approach focuses on image-based classifiers
and produces counterfactual explanations.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present a combinatorial testing-based

approach to explaining image classifiers. Our approach is
model-agnostic, as it treats the underlying model as a black

box. We evaluated our approach using the VGG16 model [1]
and seed images from the ImageNet dataset [4]. Our results
suggest that for 44 (out of 50) images, our approach can
effectively generate a counterfactual explanation. For 28
images, the counterfactual explanation is generated by
removing no more than 2 segments. Overall, the results
indicate BEN, a combinatorial testing-based fault localization
approach, has the potential to be effectively applied and derive
explanations for ML models.

In some cases (6 out 50 images), we are unable to derive
counterfactual explanations using our approach. Based on the
initial analysis, we suspect that BEN is unable to find an
inducing combination as it expects at least one failing test.
Therefore, as part of future work, we plan to investigate this
by increasing the initial test strength or increasing the segment
size or both.

In addition, we plan to continue our work in the following
directions. First, in our current approach, a counterfactual
explanation cannot be derived from the inducing combination
alone for some images. Also, some inducing combinations
suggest no changes to be made, i.e., not to mask any segment.
We plan to investigate how to generate more effective
inducing combinations. Second, in the case of a model’s
misclassification, a counterfactual explanation could help
identify a set of features that contribute to the
misclassification. We plan to investigate how to use the
feedback from the counterfactual explanations for model
debugging. Third, we plan to extend this work to generate a
counterfactual explanation for ML models trained with tabular
data. Finally, we plan to include additional subject models and
perform a detailed, comprehensive comparison with similar
XAI tools.

ACKNOWLEDGMENT
This work is supported by research grant

(70NANB18H207) from Information Technology Lab of
National Standards and Technology (NIST).

Disclaimer: Certain software products are identified in
this document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[2] Sun, Y., Chockler, H., Huang, X., & Kroening, D. (2020, August).
Explaining Image Classifiers using Statistical Fault Localization.
In European Conference on Computer Vision(pp. 391-406). Springer,
Cham.

[3] Vermeire, T., & Martens, D. (2020). Explainable Image Classification
with Evidence Counterfactual. arXiv preprint arXiv:2004.07511.

[4] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ...
& Fei-Fei, L. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3), 211-252.

[5] ImageNet DET_test_dataset , http://image-
net.org/image/ILSVRC2017/ILSVRC2017_DET_test_new.tar.gz,
Accessed: 2021-01-15

[6] ImageNet VGG16 Model with Keras,
https://slundberg.github.io/shap/notebooks/ImageNet%20VGG16%20
Model%20with%20Keras.html, Accessed: 2021-01-17

[7] Ghandehari, L. S., Chandrasekaran, J., Lei, Y., Kacker, R., & Kuhn, D.
R. (2015, April). BEN: A combinatorial testing-based fault localization
tool. In 2015 IEEE Eighth International Conference on Software

Testing, Verification and Validation Workshops (ICSTW) (pp. 1-4).
IEEE.

[8] Ghandehari, L. S., Lei, Y., Kacker, R., Kuhn, D. R. R., Kung, D., &
Xie, T. (2018). A combinatorial testing-based approach to fault
localization. IEEE Transactions on Software Engineering.

[9] Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual
explanations without opening the black box: Automated decisions and
the GDPR. Harv. JL & Tech., 31, 841.

[10] Dhurandhar, A., Chen, P. Y., Luss, R., Tu, C. C., Ting, P., Shanmugam,
K., & Das, P. (2018). Explanations based on the missing: Towards
contrastive explanations with pertinent negatives. In Advances in
neural information processing systems (pp. 592-603).

[11] Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019).
Counterfactual visual explanations. arXiv preprint arXiv:1904.07451.

[12] Hendricks, L. A., Hu, R., Darrell, T., & Akata, Z. (2018). Generating
counterfactual explanations with natural language. arXiv preprint
arXiv:1806.09809.

[13] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S.
(2012). SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE transactions on pattern analysis and machine
intelligence, 34(11), 2274-2282.

[14] Advanced Combinatorial Testing System (ACTS),
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-
software , Accessed: 2021-01-20

[15] Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling
deep neural networks. IEEE Transactions on Evolutionary
Computation, 23(5), 828-841.

[16] Mothilal, R. K., Sharma, A., & Tan, C. (2020, January). Explaining
machine learning classifiers through diverse counterfactual
explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency(pp. 607-617).

[17] Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., &
Giannotti, F. (2018). Local rule-based explanations of black box
decision systems. arXiv preprint arXiv:1805.10820.

[18] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Model-agnostic
interpretability of machine learning. arXiv preprint arXiv:1606.05386.

[19] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting
model predictions. In Advances in neural information processing
systems (pp. 4765-4774).

[20] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should
I trust you?" Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 1135-1144).

[21] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., ... & Herrera, F. (2020). Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion, 58, 82-115.

[22] Das, A., & Rad, P. (2020). Opportunities and challenges in explainable
artificial intelligence (xai): A survey. arXiv preprint
arXiv:2006.11371.

[23] Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A
survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6,
52138-52160.

[24] Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S.,
& Turini, F. (2019). Factual and counterfactual explanations for black
box decision making. IEEE Intelligent Systems, 34(6), 14-23.

[25] 2015, Open Source Computer Vision Library,
https://github.com/opencv/opencv, Accessed: 2021-01-20

[26] Hunter, J. D. (2007). Matplotlib: A 2D graphics
environment. Computing in science & engineering, 9(3), 90-95.

[27] XAI-Tool, https://github.com/cjaganmohan/XAI-Tool, Accessed:
2021-01-20

[28] XAI-Tool-Results-Dropbox, https://tinyurl.com/y3sc6qoy, Accessed:
2021-01-20

[29] Hilton, D. J., & JOHN, L. M. (2007). The course of events:
counterfactuals, causal sequences, and explanation. In The psychology
of counterfactual thinking (pp. 56-72). Routledge.

[30] Kuhn, R., & Kacker, R. (2019). An application of combinatorial
methods for explainability in artificial intelligence and machine
learning (draft) (pp. 7-7). National Institute of Standards and
Technology.

[31] Kuhn, D. R., Kacker, R. N., Lei, Y., & Simos, D. E. (2020, October).
Combinatorial Methods for Explainable AI. In 2020 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW) (pp. 167-170). IEEE.

[32] Molnar, C. (2020). Interpretable Machine Learning. Lulu. Com

[33] Module:Segmentation – skimage v0.19.0 dev docs, https://scikit-
image.org/docs/dev/api/skimage.segmentation.html#skimage.segment
ation.slic, Accessed: 2021-02-22

[34] scikit-image/slic_superpixels, https://github.com/scikit-image/scikit-
image/blob/main/skimage/segmentation/slic_superpixels.py,
Accessed: 2021-02-22.

