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Abstract—Machine Learning (ML) models, a core 
component to artificial intelligence systems, often come as a 
black box to the user, leading to the problem of interpretability. 
Explainable Artificial Intelligence (XAI) is key to providing 
confidence and trustworthiness for machine learning-based 
software systems. We observe a fundamental connection 
between XAI and software fault localization. In this paper, we 
present an approach that uses BEN, a combinatorial testing-
based software fault localization approach, to produce 
explanations for decisions made by ML models. 
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I. INTRODUCTION  
Artificial Intelligence (AI) based software systems are 

increasingly adopted in safety-critical domains, e.g. medical 
imaging and autonomous driving. At the core of AI-based 
software systems is a machine learning (ML) model that is 
used to perform tasks such as classification and prediction. 
The ML models used in such tasks are black box in nature, 
i.e., the reasoning behind their decision is typically not known 
to the user. Using a black box model in AI software systems 
could compromise trustworthiness and create problems such 
as racial and gender bias. There is an urgent need to provide 
explanations for the decisions made by AI-based software 
systems. 

Explainable Artificial Intelligence (XAI) focuses on 
creating approaches and tools that can automatically provide 
explanations for the decisions made by ML models [21]. In 
particular, XAI tries to answer the following two questions: 
Why does the model make a particular decision? What are the 
major factors that contribute to the decision? XAI has attracted 
a lot of interest from both academia and industry in the past 
few years. Providing explanations allows a model to be 
interpreted, which is key to acceptance of AI technologies. 
Furthermore, information gathered from an interpretable 
model can help engineers determine the cause of incorrect 
decisions. 

There are two types of explanations for AI decisions. 
Local explanations are created to explain a specific decision, 
whereas global explanations are created to explain an entire 
model. In this paper we present an approach that creates local 
explanations using the counterfactual approach, which human 
factor studies have shown to be highly effective for 
explanation [29]. A counterfactual approach tries to identify a 

minimum set of features that, if removed, would cause a 
different decision to be made [24]. 

The key insight is that from an abstract perspective, 
producing a counterfactual explanation for a local decision 
made by an ML model is similar to the fault localization 
problem [30][31]. In fault localization, given a failing 
scenario, a software developer identifies which part of the 
input that causes the failure. Similarly, in XAI, given a 
decision made by an ML model, we identify features that 
causes the decision, in the sense that if these features are 
removed, then the decision would be different.  

Specifically, we explore the use of a combinatorial testing-
based fault localization approach called BEN to produce 
counterfactual explanations for image classifiers. Given a t-
way test set, BEN identifies a failure-inducing (or inducing) 
combination that causes every test (for a deterministic system) 
containing the combination to fail and that is as small as 
possible [8]. We apply BEN to quickly identify a minimal 
subset of features in an image that, if removed, would result 
in a different classification. 

Assume that a model M produces a classification X for an 
input image I. To produce a counterfactual explanation for this 
classification result, we first perform segmentation on image 
I. In image segmentation, various algorithms are used to 
assign a class to each pixel of an image. For example, in a 
street scene, boundary detection and other algorithms may 
identify classes “sign”, “human”, “car”, etc., and each pixel of 
the image is associated with one of the classes. The 
segmentation process may be applied at a more granular level 
to identify parts of objects. Each segment is modeled as a 
Boolean parameter. We build a 2-way test set for these 
parameters. Each test can be used to derive a test image from 
the original image, i.e. image I. A segment is masked in the 
test image if the corresponding parameter is true in the test; 
otherwise, a segment is retained without modification.  

The notion of test execution is mapped to image 
classification in the following sense. If a test image is 
classified by model M differently than the original image, the 
corresponding test execution is considered to be failing. 
Otherwise, the corresponding test execution is considered to 
be passing. The 2-way test set with execution statuses is then 
fed to BEN to identify inducing combinations. In the 
identification process, BEN could generate additional tests, 
which can be executed in the same manner. That is, for each 
additional test, a test image is first derived and then classified 
using model M to determine its execution status.  



 

 

Finally, each inducing combination identified by BEN is 
used to derive an image that produces a different 
classification. This image serves as a counterfactual 
explanation for the original classification X.    

We report an experimental evaluation of our approach. We 
use the VGG16 model [1], a popular image classifier as our 
subject model and fifty randomly selected seed images from 
the ImageNet test dataset [4]. Our results suggest for 44 (out 
of 50) images, our approach can generate counterfactual 
explanations. Furthermore, in most cases, our approach can 
generate a counterfactual explanation by removing no more 
than two segments from the input image.  

 The remainder this paper is organized as follows. Section 
II provides an introduction to Deep Neural Network-based 
image classifiers, counterfactual explanations, and BENs. In 
Section III, we present our approach and give an example to 
illustrate the approach. Section IV reports the experimental 
evaluation of our approach, where we present our 
experimental design, results and discussion. Section V 
discusses the existing work on XAI. Section VI provides 
concluding remarks and directions for our future work.  

II. BACKGROUND 

A. Deep Neural Networks  
Deep learning is used across domains such as autonomous 

driving, speech recognition, speech translation, and medical 
imaging. At the core of deep learning is a Deep Neural 
Network (DNN) that is used to perform tasks such as image 
classification, object detection, and others. A DNN follows a 
neural network architecture and consists of an input layer, 
several hidden layers and an output layer. A trained DNN 
model takes an input (e.g., an image) and produces a 
prediction as output.  

Compared to traditional software development, where the 
programming logic is implemented based on rules derived 
from the requirements, DNN based applications derive their 
decision logic (learning) from a training dataset. The decision 
logic is referred to as the trained DNN model.  

In recent years, deep learning-based image recognition 
software systems have improved significantly and could be 
more efficient than humans in some domains. A practitioner 
can build a DNN model using different types of neural 
network architecture. One of the popular neural network 
architectures used for image recognition tasks is convolutional 
neural networks (CNN). Given an input, CNN architecture is 
known for its ability to detect important features without any 
human supervision. The subject models used in our 
experiments use a CNN based architecture and perform image 
classification. 

B. AI Explanations 
The explanations generated by XAI tools can be 

categorized into two types, feature-importance based 
explanations and counterfactual explanations. Assume a 
model M that produces a classification X for an input image I. 
A feature-importance based explanation identifies a set of 
important features of I that contribute to decision X. In 
addition, it assigns weights to the features that quantify their 
contribution. In contrast, a counterfactual explanation 
identifies a minimum set of features of I that if removed, shall 
change the prediction. In other words, counterfactual 
explanations are contrastive in nature. 

C. BEN 
Ghandehari et al. developed a combinatorial testing-based 

approach called BEN to software fault localization [7, 8]. 
Localizing a fault using BEN consists of two major phases: 
inducing combination identification (Phase I) and faulty 
statement localization (Phase II). BEN assumes that a 
combinatorial t-way test set is available and has been executed 
on the SUT. In the first phase, BEN takes the t-way test set 
and its results as input and tries to identify one or more 
inducing combinations in an iterative manner. BEN analyses 
the test file and identifies a set of t-way suspicious 
combinations. Based on the t-way suspicious combination(s), 
BEN generates a new t-way test set. For the new t-way test 
set, the user generates concrete tests, executes the tests, and 
records their execution status (either pass or fail). Then, the 
user provides the execution status back to BEN. This process 
is repeated until BEN identifies an inducing combination. 
Note that BEN expects the initial test set to contain at least one 
passing and one failing test. If there is no passing test in the 
initial t-way test set, BEN identifies an inducing combination 
based on the initial t-way test set. In our approach, the 
inducing combination identified by BEN is used to generate 
counterfactual explanations. Phase II of BEN is not utilized in 
our approach. 

III. APPROACH 
This section presents a combinatorial approach to generate 

counterfactual explanations for machine learning models that 
take an image as input and output a prediction. Our approach 
consists of four phases: Image segmentation, t-way testing, 
identifying inducing segments, and constructing explanations. 

Image Segmentation: Image segmentation is a widely 
used image processing technique that partitions a digital 
image into different segments based on the characteristics of 
the image pixels. In our approach we first perform image 
segmentation on the input image. As discussed later, each 
segment is modeled as a parameter during CT. Working with 
segments instead of pixels allows us to reduce the number of 
parameters in our input parameter model (IPM). 

We point out that the number of segments could 
potentially affect the quality of the counterfactual explanation. 
The more segments, the finer grained the resulting explanation 
could be. However, the more segments, the more parameters, 
the more expensive to produce the explanation. Many 
segmentation algorithms allow the user to define a maximum 
number of segments. The exact number of segments produced 
by the segmentation process is typically close to the maximum 
number. A trade-off decision often needs to be made when 
choosing the maximum number of segments. 

Recall that BEN assumes that there exists an input 
parameter model (IPM) of the SUT, a test oracle to determine 
the status of the test execution, and a t-way combinatorial test 
set with execution results. In the following we discuss how to 
provide these components in the context of XAI. 

T-Way Testing: We begin this phase by deriving an input 
parameter model for the SUT, i.e., for the input image. For an 
input image, every segment is considered as a parameter.  

Our approach aims to identify a minimum number of 
segments that, if removed, would change the prediction. To 
remove a segment, we perform a masking operation on the 
particular segment. In our approach, a segment can either be 
masked or not masked. Therefore, in the IPM, for each 



 

 

parameter, we identify the following two values – true 
(masked) and false (not masked).  

Then, we generate an abstract t-way test set using ACTS, 
a combinatorial test generation tool [14]. We derive the 
concrete tests by applying masking to specific image segments 
(as per the test case) using image-processing python libraries 
[13,  25, 33, 34]. We execute the concrete tests (images) and 
determine their execution statuses. 

Given an image, the DNN model produces a class label 
(prediction) as output. To determine the execution status of a 
test, we define the test oracle as follows: On executing the 
model with a test image, if the output (class label) matches 
that of the original image, we consider it to be a passing test. 
If the output does not match the output of the original image, 
we consider it to be a failing test.  

Identifying Inducing Combinations: We begin this 
phase by providing an initial test file (as input) to BEN. The 
initial test file includes parameters and values, the test 
strength, the initial t-way test set, and the execution status of 
each test. In each iteration, analyzing the test file, BEN either 
generates an additional set of tests or terminates by identifying 
inducing combination(s). For additional tests generated by 
BEN, we derive concrete tests (t-way images), execute the 
model with the test images and update their execution statuses. 
Then, we provide the updated test results to BEN.  

This process continues until one of the stopping conditions 
is satisfied: (1) an inducing combination is identified by BEN, 
or (2) the user decides to stop the process. In the latter case, 
the top-ranked suspicious combination is considered to be the 
inducing combination, and we proceed to the next phase. 

Constructing Explanations: In this phase, we derive 
explanations based on the inducing combinations in an 
iterative manner.  

Given the nature of the XAI problem, an inducing 
combination identified by BEN may not be directly used to 
produce a counterfactual explanation. Consider a scenario 
where an input image has 20 segments (i.e., 20 parameters, 
and each parameter has two values - TRUE, FALSE). BEN 
identifies the following two inducing combinations: 
(segment_1 = FALSE, segment_4 = FALSE), (segment_2 = 
TRUE, segment_4 = FALSE).  

The first inducing combination suggests a test retaining 
segment_1 and segment_4 shall fail (change the prediction). 
Even though all the test images that contain these two 
segments have a different classification, this inducing 
combination cannot be used to produce a counterfactual 
explanation, since it does not suggest any segments to be 
removed.  

The second inducing combination suggests to remove 
segment 2 (masked) while retaining segment_4 in order to 
produce a different classification. This combination can be 
used to produce a counterfactual explanation as discussed 
next.  

In general, an inducing combination that suggests the 
removal of one or more segments can be used to produce 
counterfactual explanations.  

We begin to construct a counterfactual explanation by 
selecting the top-ranked inducing combination, generating an 
image based on the inducing combination (modified image), 
executing the model with the image, and recording its 

execution status. Suppose the prediction of the modified 
image differs from the prediction of the original image (fail). 
In that case, the approach stops, and the modified image is 
shown as an explanation to the user.  

Otherwise, if the prediction of the modified image is the 
same as the prediction of the original image state (pass), we 
select the next ranked inducing combination and repeat the 
process, i.e., generate an image based on the inducing 
combination, and execute and compare its prediction with the 
original prediction.  

This process is continued until either of the two conditions 
is satisfied: (1) the prediction of a modified image generated 
based on inducing combination(s) differs from the prediction 
of the original image; or (2) all the modified images generated 
based on the inducing combination(s) match the original 
prediction. In the first case, the modified image is shown as an 
explanation to the user. In the second case, we derive an 
explanation as follows.  

First, we analyze the test suite and identify a test that (1) 
contains the inducing combination, and (2) the prediction 
differs from the original prediction (i.e., a failing test). If there 
is more than one test that satisfies the two criteria, we select a 
test with the least number of masked segments. Recall that our 
objective is to identify a minimal number of segments that, if 
removed, shall change the prediction. 

Next, in addition to the inducing combination, we mask 
the additional segments whose values are true in the test in an 
incremental manner (one segment at a time), starting with the 
segments closer to the segments in the inducing combination. 
This process is repeated until the prediction of the modified 
image differs from the original prediction.  The modified 
image is shown as an explanation to the user. Note that 
masking additional segments from a failing test is likely to 
produce a counterfactual explanation, since its prediction 
differs from the original prediction. 

Example: We illustrate our approach using an example. 
Consider the image in Figure 1. It is assumed that the DNN 
model is executed with the image and the prediction result (P) 
is available.  

To derive a counterfactual explanation, we begin with 
image segmentation, which identified the possible number of 
segments for the subject image as 20 (Figure 2).  

Next, we build an IPM with 20 parameters; each parameter 
has two values: {TRUE and FALSE}. Then, we generate a 2-
way test set (12 tests) using ACTS [14]. We derive the 
concrete tests (test images), execute the model with concrete 
tests, record and compare their execution statuses (P`) with the 
original prediction (P). Based on the execution statuses, we 
have four passing tests (P = P`) and eight failing tests (P != 
P`). A test file is generated, and it contains the IPM, the 
strength of the t-way test set, the t-way test set, and its 
execution status. 

Next we provide the test file as input to BEN. After a 
couple of iterations, BEN identifies an inducing combination 
- segment_10=TRUE,segment_12=TRUE,segment_17=false. 
Note that at each iteration, we repeat the process of deriving, 
executing, and updating the status of the additional tests.  

To derive a counterfactual explanation, we generate a 
modified image based on the inducing combination - 



 

 

segment_10=TRUE,segment_12=TRUE,segment_17=FALS
E. 

Although the inducing combination consists of three 
segments, the modified image will have two (out of three) 
segments, namely S_10, S_12 masked, while no changes 
being made to S_17, as its value is  FALSE, i.e., not to mask 
the segment. Then, we execute the model with the modified 
image, and its output (prediction) is compared to the output of 
the original image. The prediction of the modified image 
differs from the original prediction.  

At this point, the approach terminates, and the modified 
image (Figure 3) is shown as a counterfactual explanation to 
the user. 

IV. EXPERIMENTS 
In this section, first, we present the design of our 

experiments including the research question, the subject 
model and selection of seed images, segmentation and 
masking techniques, and the metrics used to measure the 
effectiveness of our approach. Second, we present and discuss 
our results. Third, we compare the results of our approach with 
SHAP, a popular state-of-the art XAI tool. Finally, the threats 
to validity are discussed. The source code, data and/or artifacts 
have been made available at [27, 28] 

A. Research Questions 
 The major research question of our evaluation is the 

following: 

• How effective is BEN in generating 
counterfactual explanations for DNN-based 
image classifiers? 

B. Model 
We evaluate our approach using an open-source, pre-

trained model – VGG16 [1]. The model uses a convolutional 

neural network architecture consisting of 13 convolution 
layers and three dense layers. VGG16 is used in evaluating 
similar explainable AI tools [2].  

C. Seed Images 
The ImageNet dataset is an extensive collection of visual 

images. The ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) is an annual competition for evaluating 
algorithms for object detection and image classification [4]. 
The VGG16 model, a runner-up at the ILSVRC 2014 
challenge, is trained using the ImageNet dataset with over 14 
million images with 1000 classes.   

In our experiments, we use the ILSVRC2017 test dataset, 
the latest test dataset from ImageNet (ILSVRC2017). The test 
dataset consists of 5500 images [4, 5]. We randomly selected 
fifty seed images. 

D. Segmentation 
The Simple Linear Iterative Clustering (SLIC) algorithm 

is used to perform image segmentation [13]. Based on the 
maximum number of desired segments provided by the user, 
the SLIC algorithm clusters pixels based on their color 
similarity and proximity in the image plane and create 
segments. In our experiments, we set the maximum number of 
segments to 25. However, the exact number of possible 
segments varies for each seed image. This is because the SLIC 
algorithm generates segments based on certain properties of 
an image. 

E. Masking of Segments 
An image consists of an array of dots referred to as pixels. 

Pixels of a color image can have a value in the range of 0 to 
255. The value of 0 represents a black pixel, and the value of 
255 denotes a white pixel. In our experiments, we mask a 
segment by setting all its pixels to the value of 0. 

F. Metrics 
The effectiveness of our approach is measured in terms of 

the quality of the counterfactual explanations it produces. The 
quality of a counterfactual explanation could be measured in 
different ways [21][32]. Ultimately, a counterfactual 
explanation should make sense to a human subject. This is 
however subjective.  

In our experiments, the quality of a counterfactual 
explanation is measured in the following two aspects: (1) the 
number of segments that need to be removed from the original 
image to produce the explanation. The fewer segments to be 
removed, the easier to be understood, the higher quality. (2) 
the explanation must produce a different prediction than the 
original prediction. 

G. Results and Discussion 
Our approach effectively derived counterfactual 

explanations for 44 (out of 50) seed images. In the following, 
we present the details of our results. Due to space limitations, 
we only show some example results in this section. The 
complete results are available at [27, 28].  

1) Counterfactual Explanations 
First, we present the results of counterfactual explanations 

generated from an inducing combination alone i.e., no 
additional segments need to be removed. For 24 out of 50 

 



 

 

images, the modified images generated based on their 
respective inducing combination (identified by BEN) 
effectively change the original prediction.  

Our results show that for 6 out of 24 images, our approach 
removes one segment to produce the counterfactual 
explanation. For 16 out of 24 images, our approach only 
removes 2 segments. For the remaining 2 out of 24 images, 
our approach removes three segments. 

Figure 4 shows some example results of these images. In 
each row, the first image is the original seed image; the second 
image shows the segmentation applied to the seed image. The 
third image is the counterfactual explanation. For the image in 
Row 1, removing one segment (segment 4) modifies the 

prediction from white_stork to black_stork. For the images in 
Row 2 (original prediction: dragonfly) and Row 3 (original 
prediction: stage), removing two segments changes the 
prediction to lycaenid and feather_boa, respectively. For the 
image in Row 4 removing 3 segments changes the prediction 
from sea lion to promontory. 

Next, we discuss the counterfactual explanations that 
cannot be derived from the inducing combination alone. 
Instead, some additional segments need to be removed to 
produce a counterfactual explanation. For 20 images in our 
experiments, the modified images generated from their 
respective inducing combinations alone do not change the 
predicted class labels. Therefore, additional segments must be 

 



 

 

removed for these images in order to produce a counterfactual 
explanation. 

Our results indicate that for 8 out of 20 images, masking 
one additional segment along with the inducing combination 
was sufficient to change the classification. For 7 out of the 
remaining 15 images, two additional segments needed to be 
masked. For the remaining 5 images, in addition to the 
inducing combinations, we masked three to five additional 
segments to generate a counterfactual explanation.  

 Figure 5 presents some of the counterfactual explanations 
generated from the inducting combination and one or more 
additional segments. In each row, the first image is the original 
seed image, followed by the segmentation applied to the seed 
image and the modified image produced based on their 
respective inducing combination. The fourth image is the 
counterfactual explanation produced from the inducing 
combination and one or more additional segments.  

For the image in Row 1 - image #2737 with an original 
prediction - mountain_bike, masking one segment 
(segment_4=true), in addition to the inducing combination 
(segment_5=true, segment_13=true), changes the original 
prediction from mountain_bike to moped. Similarly, for image 
#4148 (Row 2) with an original prediction of Arabian_camel, 
masking one additional segment changes the original 
prediction from Arabian_camel to a sarong. 

 Consider the image in Row 3 (image #3793, original 
prediction – tiger), in addition to the inducing combination 
(segment_7=true, segment_19=true), masking four more 

segments (segment 2, 4, 17, 20) is necessary to change the 
original prediction from tiger to an Egyptian_cat. 

The results suggest that in most cases, our approach can 
efficiently generate a high quality counterfactual for image 
classifiers.  In other words, our approach can effectively 
identify a minimal (2 or 3 segments) yet important set of 
segments that if removed, would modify the original 
prediction.  

 We note that BEN was unable to identify inducing 
combinations for five seed images. For one of the seed images 
(image # 4541), BEN terminated with an error message. There 
is no suspicious combination whose length is 2. For the 
remaining five seed images, in spite of multiple iterations, 
BEN failed to identify an inducing combination. We observe 
that all the additional tests generated by BEN  resulted in a 
passing status for each of these images. Therefore, we suspect 
BEN is unable to find an inducing combination as it expects 
at least one failing test to identify an inducing combination. 
We plan to investigate this as part of future work. 

2) Comparison with SHAP 
We compare the counter-factual explanations (derived by 

our approach) with SHAP, a widely used feature-importance 
approach tool [19]. Given an input and a pre-trained model, 
SHAP produces explanations for a model's decision by 
ranking the input features that contributed to the model's 
decision (feature-importance-based explanation). This 
comparison allows us to see the importance of the segments 
removed by our approach to produce a counterfactual 
explanation. 

 



 

 

  Figure 6 presents some of the comparison results. The 
first image in each row presents the counterfactual explanation 
identified by our approach. The second image represents the 
output produced by the SHAP tool. SHAP output consists of 
four images: the original image (provided as input to the 
SHAP algorithm), followed by the top three predictions from 
the model with the features (segments) contributing to that 
corresponding predictions. Features (segments) that positively 
contribute to the outcome are highlighted in green, and 
features (segments) that negatively contribute to the outcome 
are highlighted in red. 

Among the five images, the output from SHAP suggests, 
the set of segments that are removed to generate a 
counterfactual explanation in our approach positively 
contributes to the original decision (highlighted in green 
color).  In other words, our approach identifies a minimal yet 

significant set of segments that if removed, shall modify the 
prediction. One of the interesting examples is the image from 
row 3 in Figure 6. The image consists of two performers, a 
microphone and a guitar. The predicted class label for the 
original seed image is a stage. Our approach suggests a part of 
a performer's body (segment #7) be removed to generate a 
counterfactual explanation, which is an unexpected segment 
(intuitively). However, the results from SHAP confirm that 
segment #7 contributes significantly to the predicted class 
label.  

A counterfactual explanation does not determine the 
correctness of the original prediction. Consider the image 
from the image from row 5 in Figure 6. The image consists of 
a person on a motorcycle. The predicted class label for the 
original seed image (mountain_bike) might not match the 
user’s expectation (motorcycle).  In such scenarios, i.e., in 

 



 

 

case of a model’s misprediction, deriving a counterfactual 
explanation can identify a set of features (segments) that if 
removed would modify the prediction. In other words, a 
counterfactual explanation could help identify a set of features 
that contribute to the misprediction. Likewise, SHAP also 
indicates the set of segments that contribute to the original 
prediction - mountain_bike. As part of future work, we plan to 
investigate the possibility of using the feedback from the 
counterfactual explanations to debug a model’s misprediction.  

This is an initial comparison study. The overall results 
indicate that BEN can be effectively adopted to derive a 
counterfactual explanation that indicates significant segments, 
i.e., segments that make a significant contribution to a model’s 
decision. SHAP performs 1000 iterations to generate 
explanations. That is, SHAP executes the VGG16 model 1000 
times to identify the important features that contribute to a 
model’s decision. In contrast, our approach derives 
explanations with an average of 20 - 25 test cases (image 
perturbations). In other words, we derive a counterfactual 
explanation by executing the VGG16 model for an average of 
25 times. We plan to perform a detailed, comprehensive 
comparison with other state-of-the-art explainable AI tools as 
part of future work.  

H. Threats to Validity 
 Threats to internal validity are factors that may be 
responsible for the experimental results, without our 
knowledge. To mitigate the risk of human errors, we tried to 
automate as many tasks as possible, from generating synthetic 
images to executing the tests. Also, we have manually checked 
some of the results whenever any inconsistent or surprising 
results occur. For example, for image 3456 and 3462 all the 
initial tests resulted in a failure. In contrast, image 3703 and 
3793 had a mix of passing and failing test. In such scenarios, 
we manually verified test results by inspecting the images and 
the prediction results. 

 Threats to external validity occur when the results from 
our experiments could not be generalized to other subjects. 
The DNN model architecture used in our study have been used 
in other studies [2, 3]. We randomly selected fifty seed images 
from ImageNet, a large, diverse dataset with more than 5000 
images. This helps to alleviate the risk of lack of diverse 
images used in our study. 

V. RELATED WORK 
In this section, we discuss existing work that is closely 

related to our work. First, we discuss existing work on 
counterfactual explanations. Dhurandhar et al. proposed a 
method that produces contrastive explanations. Their method 
identifies two sets of pixels: (1) A minimal set of features that 
are sufficient to obtain the current classification (pertinent 
positive); and (2) A minimal set of features that should be 
absent to obtain the current classification (pertinent negative) 
[10]. In contrast, we identify a minimal number of features 
(segments) that if removed (absent), will change the current 
classification.   

Goyal et al. proposed a technique that generates 
counterfactual visual explanations [11]. Assume that for an 
input image I, model M predicts class A. Their approach 
generates a visual explanation that tries to answer the 
following question: How should the image I be different for 
the model to predict Class B instead of Class A? Our work is 
similar to theirs in terms of altering the input image and 

showing a modified image as a counterfactual explanation. 
However, in our approach, the modification is limited to 
removal of one or more segments from the original image, 
whereas they generate counterfactual explanation by 
identifying and replacing regions of the original image with 
regions from the image belonging to the counterfactual class.  

Vermeire et al. proposed a model-agnostic approach to 
generate counterfactual explanations for image classifiers [3]. 
Our work is similar to theirs in terms of identifying segments 
that, if removed, shall change the classification. Our work is 
different from theirs in the following ways: They propose two 
methods, i.e., Search for Evidence Counterfactuals (SEDC) 
and Search for Evidence Couterfactuals with Target 
Counterfactual Class (SEDC-T). SEDC uses a best-first 
search approach to generate a counterfactual explanation. In 
SEDC-T, a counterfactual explanation is generated by 
removing segments (iteratively) to reach a predefined target 
class. In contrast, we use a combinatorial testing-based 
approach to generate counterfactual explanations, and our 
approach does not target a predefined class.  

Hendricks et al. propose a method that produces a 
descriptive counterfactual text as an explanation to the end 
user [12]. Compared to this, our approach displays a modified 
image (with removed segments) to the end user.  

Existing work reported in [16, 17] generates 
counterfactual explanations for tabular data. In contrast, our 
work generates counterfactual explanations for an image data.  

Riberio et al. proposed LIME that generates local 
explanations based on input perturbations that probe a ML 
model and derive explanations [18,20]. Lundberg et al. 
proposed SHAP that generates explanations using game 
theoretic framework [19]. Similar to our work, LIME and 
SHAP create image perturbations by segmentation to derive 
an explanation. However, our work focuses on generating a 
counterfactual explanation, whereas their work focuses on 
identifying important features that contribute to the original 
decision.  

Sun et al. proposed a statistical fault localization-based 
approach called DeepCover to generate explanations for 
image classifiers [2]. In their approach every pixel from the 
image is assigned a score in terms of their likelihood to 
contribute to the original decision. An explanation is derived 
by adding sufficient pixels (a subset of the original pixels) that 
shall produce the original decision. Our work is similar to their 
work in terms of using a software fault localization-based 
approach to derive explanations. However, our work differs in 
the following two ways: 1) we generate t-way test inputs 
(image perturbations) whereas their approach randomly 
selects and masks a set of pixels; and 2) we generate a 
counterfactual explanation whereas their explanation focuses 
on the pixels that contribute to the original decision.  

Similar to our work, Kuhn et al. adopted a combinatorial 
fault location process and reported an approach that identifies 
a unique t-way combination that contributes to a model’s 
decision [30][31].  Their approach is designed for tabular data. 
In contrast, our approach focuses on image-based classifiers 
and produces counterfactual explanations.  

VI. CONCLUSION AND FUTURE WORK 
In this paper, we present a combinatorial testing-based 

approach to explaining image classifiers.  Our approach is 
model-agnostic, as it treats the underlying model as a black 



 

 

box. We evaluated our approach using the VGG16 model [1] 
and seed images from the ImageNet dataset [4]. Our results 
suggest that for 44 (out of 50) images, our approach can 
effectively generate a counterfactual explanation. For 28 
images, the counterfactual explanation is generated by 
removing no more than 2 segments. Overall, the results 
indicate BEN, a combinatorial testing-based fault localization 
approach, has the potential to be effectively applied and derive 
explanations for ML models.  

In some cases (6 out 50 images), we are unable to derive 
counterfactual explanations using our approach. Based on the 
initial analysis, we suspect that BEN is unable to find an 
inducing combination as it expects at least one failing test. 
Therefore, as part of future work, we plan to investigate this 
by increasing the initial test strength or increasing the segment 
size or both.  

In addition, we plan to continue our work in the following 
directions. First, in our current approach, a counterfactual 
explanation cannot be derived from the inducing combination 
alone for some images. Also, some inducing combinations 
suggest no changes to be made, i.e., not to mask any segment. 
We plan to investigate how to generate more effective 
inducing combinations. Second, in the case of a model’s 
misclassification, a counterfactual explanation could help 
identify a set of features that contribute to the 
misclassification.  We plan to investigate how to use the 
feedback from the counterfactual explanations for model 
debugging.  Third, we plan to extend this work to generate a 
counterfactual explanation for ML models trained with tabular 
data. Finally, we plan to include additional subject models and 
perform a detailed, comprehensive comparison with similar 
XAI tools. 
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